The following criteria are used to determine suitable locations for new trails and trail reroutes within the Grand Junction Field Office management area. This document utilizes terminology from the “Recommended Standardized Trail Terminology for Use in Colorado.” (COTI 2005)

These criteria are to be followed as guidelines. Not all of the criteria can be met on every segment of every trail. Their purpose is to help create sustainable, low maintenance trails that provide quality recreation experiences based on predetermined trail management objectives (TMOs). Specialty trails requiring higher maintenance may be allowed in appropriate locations.

1. **Know and understand trail management objectives.** TMO’s provide the framework for what the trail will look like, who will be using the trail, and how the trail will be managed. Different TMO’s may allow different applications of the criteria below.

2. **Create loops and avoid dead end trails.** All trails should begin and end at a trailhead or another trail. A well-planned stacked loop trail system offers recreationists a variety of trail options. Easier, shorter loops are arranged close to the trailhead, with longer, more challenging loops extending further beyond the trailhead. Occasionally, destination trails to a point of interest will require an out and back trail, but only if they cannot be reasonably incorporated into a loop.

3. **Identify control points and use them to guide trail design and layout.** Control points are specific places or features that influence where the trail goes. Basic control points include the beginning and end of the trail, property boundaries, intersections, drainage crossings, locations for turns, and other trails.

 - **Positive control points** are places where you want users to visit, including scenic overlooks, historic sites, waterfalls, rock outcroppings, lakes, rivers and other natural features or points of interest. If the trail does not incorporate these features, users will likely create unsustainable social trails to get to them.

 - **Negative control points** are places you want users to avoid, such as low-lying wet areas, flat ground, extremely steep cross slopes or cliffs, unstable soils, environmentally sensitive areas, sensitive archaeological sites, safety hazards, and private property.

Knowing these control points provides a design framework. Try to connect the positive control points while avoiding the negative control points.

4. **Use cross slope and avoid flat ground whenever possible.** The trail tread should generally be aligned perpendicular to the cross slope and should utilize outsloped tread and frequent grade reversals to facilitate continuous drainage. This is the best way to keep water off the trail. However, outsloped tread is not always practical or desirable to meet recreation experience objectives. Use curvilinear design principles to create a trail that follows the natural contours of the topography, sheds water, blends with the surrounding terrain, and provides fun recreation opportunities.
The following grade guidelines will help determine appropriate tread locations.

- **The Half Rule**: “A trail’s grade shouldn’t exceed half the grade of the hillside or sideslope (cross slope) that the trail traverses. If the grade does exceed half the sideslope, it’s considered a fall-line trail. Water will flow down a fall-line trail rather than run across it. For example, if you’re building across a hillside with a (cross slope) of 20 percent, the trail-tread grade should not exceed 10 percent.” (IMBA 2004) Steeper cross slopes allow more flexibility for sustainable tread grades while flat or low angle cross slopes can be problematic. There is an upper limit to this rule. Sustaining a 24 percent tread grade, even on a 50 percent cross slope is unlikely. Additionally, trail segments may break this rule on durable tread surfaces such as solid rock.

- **The Ten Percent Average Guideline**: The average trail grade over the length of the trail should be 10 percent or less for greatest sustainability. Short sections of the trail may exceed this, but the overall grade should remain at 10 percent or less.

- **Maximum Sustainable Grade**: This is the upper grade limit for those short trail segments that push the limits of the previous two guidelines. It is determined by a site-specific analysis based on TMO’s, environmental conditions, and observations of existing trails – what’s working, and what’s not?

- **Grade Reversals**: Frequent changes in the direction of tread grade (gentle up and down undulations) will ensure that water is forced off the trail at frequent intervals.

5. **Locate trails in stable soils**. Avoid clays, deep loam and soils that do not drain rapidly. Consider season of use and type of use. A trail on a south aspect will have greater usability and sustainability for winter use. The capabilities of motorized vehicles to function in wet/muddy conditions make it imperative to avoid unstable or poorly drained soils. Trails that are less likely to be used when wet may be located in less-desirable soils if necessary. In western Colorado’s arid environment, the best soil conditions for trails are those with high rock content. Utilize slick rock for trail tread when possible. Sand is acceptable in dry washes, but otherwise avoid sand.

6. **Drainage crossings are key control points and should be selected carefully**. Consider both the trail’s impact on the drainage (erosion and sedimentation), and the drainage’s impact on the trail (changing tread surface, water channeling onto trail). The trail should descend into and climb out of the drainage to prevent water from flowing down the trail. Avoid long or steep entries into drainages. Design grade reversals into the trail on each side of the approach to minimize water and sediment entering from the trail. Look for drainage crossings on rock.

7. **Dry washes can be excellent travel ways**. They are well defined, contain noise, and are periodically resurfaced by flowing water. As long as the wash does not support riparian vegetation and has no major safety problems, like water falls, they are well suited to be part of a recreational trail system.
8. **Avoid switchbacks.** Switchbacks are difficult, time-consuming, and expensive to construct, and require regular maintenance. Users often cut them, causing avoidable impacts. Utilizing curvilinear design principles eliminates the need for most switchbacks. Climbing turns are easier to construct and maintain and utilize natural terrain features (benches, knolls, rock outcrops) to change the direction of a trail.

9. **Avoid ridge tops.** Ridge tops are often primary transportation corridors for wildlife, and were often used by Native Americans as travel routes. Noise from ridge top trails is broadcast over a wide area. Locate trails on side hills, off ridge tops, using ridges and watersheds as natural sound barriers to isolate noise.

10. **Use vegetation and other natural features to conceal the trail and absorb noise.** This can be difficult in a desert environment. Try to minimize the visual impact of the trail by following natural transitions in vegetation or soil type. A trail near the base of a sideslope or on rimrock is usually less visible than a mid-slope trail. Denser vegetation will hide a trail, lessen noise transmission, and can dissipate the energy of falling raindrops on the bare soil of the trail tread.

11. **Carefully design intersections to avoid safety problems.** When locating a bicycle or motorized vehicle trail be aware of sighting distance and sight lines. Collisions can be avoided if riders can see each other. Avoid four way intersections. Offsetting the cross traffic helps reduce speeds and reduces the risk of collisions.

Sources:

Off Highway Vehicle Trail and Road Grading Equipment, Vachowski, Maier, USDA Forest Service Missoula Technology and Development Center 1998 Doc# 7E72A49

Mountain Bike Trails: Techniques for design, construction and Maintenance, McCoy Stoner, USDA Forest Service, Missoula Technology and Development Center

Recommended Standardized Trail Terminology for Use in Colorado, Colorado Outdoor Training Initiative (COTTI). 2005

Tractor Techniques for Trailbed restoration, Hamilton, USDA Forest Service 1994

Trails 2000, Lockwood USDA Forest Service 1994

USDA Forest Service Travel Management Handbook, FS 2309.18